1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
| import numpy as np import matplotlib import matplotlib.pyplot as plt import math
def creat_datasets(): datasets = np.array([[8, 4, 2], [7, 1, 1], [1, 4, 4], [3, 0, 5]]) label = ['very hot', 'very hot', 'hot', 'hot'] return datasets, label
def analyze_data_plot(x, y): fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(x, y)
plt.title('test title') plt.xlabel('icecream') plt.ylabel('drink water') plt.show()
def computeEuclideanDistance(x1, y1, x2, y2): return math.sqrt(math.pow((x1 - x2), 2) + math.pow((y1 - y2), 2))
def computeEuclideanDistance2(arr1, arr2, length): d = 0; for i in range(length): d += math.pow(arr1[i] - arr2[i], 2) return math.sqrt(d)
def computeEuclideanDistance3(newV,dataSet): rowSize, colSize = dataSet.shape diffMat = np.tile(newV,(rowSize,1))-dataSet sq2 = diffMat**2 return (sq2.sum(axis=1)**0.5)
def knn_Classifier(newV, datasets, label, topk): import operator dist = computeEuclideanDistance3(newV,datasets) sortedDistIndexs = dist.argsort(axis=0) disCount = {} for i in range(topk): votelabel = label[sortedDistIndexs[i]] disCount[votelabel] = disCount.get(votelabel,0)+1
sortedDisCount = sorted(disCount.items(),key=operator.itemgetter(1),reverse=True) return sortedDisCount[0][0]
def predict(): dataset,label = creat_datasets() newV=[2,4,4] a = float(input()) b = float(input()) c = float(input()) newV2=[a,b,c] result = knn_Classifier(newV2,dataset,label,3) print(result)
if __name__ == '__main__': predict()import numpy as np import matplotlib import matplotlib.pyplot as plt import math
def creat_datasets(): datasets = np.array([[8, 4, 2], [7, 1, 1], [1, 4, 4], [3, 0, 5]]) label = ['very hot', 'very hot', 'hot', 'hot'] return datasets, label
def analyze_data_plot(x, y): fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(x, y)
plt.title('test title') plt.xlabel('icecream') plt.ylabel('drink water') plt.show()
def computeEuclideanDistance(x1, y1, x2, y2): return math.sqrt(math.pow((x1 - x2), 2) + math.pow((y1 - y2), 2))
def computeEuclideanDistance2(arr1, arr2, length): d = 0; for i in range(length): d += math.pow(arr1[i] - arr2[i], 2) return math.sqrt(d)
def computeEuclideanDistance3(newV,dataSet): rowSize, colSize = dataSet.shape diffMat = np.tile(newV,(rowSize,1))-dataSet sq2 = diffMat**2 return (sq2.sum(axis=1)**0.5)
def knn_Classifier(newV, datasets, label, topk): import operator dist = computeEuclideanDistance3(newV,datasets) sortedDistIndexs = dist.argsort(axis=0) disCount = {} for i in range(topk): votelabel = label[sortedDistIndexs[i]] disCount[votelabel] = disCount.get(votelabel,0)+1
sortedDisCount = sorted(disCount.items(),key=operator.itemgetter(1),reverse=True) return sortedDisCount[0][0]
def predict(): dataset,label = creat_datasets() newV=[2,4,4] a = float(input()) b = float(input()) c = float(input()) newV2=[a,b,c] result = knn_Classifier(newV2,dataset,label,3) print(result)
if __name__ == '__main__': predict()
|